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Abstract. Claims have been made that f0(1370) does not exist. The five primary sets of data requiring its
existence are refitted with suitable Breit–Wigner amplitudes. Major dispersive effects due to the opening of
the 4π threshold are included for the first time; the σ→ 4π amplitude plays a strong role. Crystal Barrel data
on p̄p→ 3π0 at rest require f0(1370) signals of at least 32 and 33 standard deviations (σ) in

1S0 and
3P1 an-

nihilation respectively. Furthermore, they agree within 5MeV for mass and width. Data on p̄p→ ηηπ0 agree
and require at least a 19σ contribution. This alone is sufficient to demonstrate the existence of f0(1370). BES
II data for J/Ψ → φπ+π− contain a visible f0(1370) signal> 8σ. In all cases, a resonant phase variation is re-
quired. Cern–Munich data for ππ elastic scattering are fitted well with the inclusion of some mixing between
σ, f0(1370) and f0(1500). Values of Γ2π for f2(1565), ρ3(1690), ρ3(1990) and f4(2040) are determined.

PACS. 13.25.Gv; 14.40.Gx; 13.40.Hq

1 Introduction

The f0(1370) plays a vital role in the spectroscopy of light
JP = 0+ mesons. The role of experiment is to identify the
resonances required by data and determine their param-
eters: mass, width and branching ratios. Many schemes
exist for grouping the observed states into nonets. The 0+

glueball is predicted at ∼ 1640MeV [1], but with a sizable
error from uncertainty in how to normalise the mass scale.
The glueball would make an additional SU(3) singlet state,
mixing with neighbouring nonet states. It is therefore ne-
cessary to scrutinise the evidence for each state.
Klempt [2] and Klempt and Zaitsev [3] question

whether there is an identifiable 0+ glueball and hence ar-
gue against the existence of f0(1370). Ochs has argued
against it at conferences for two reasons. He suggests
that it can be confused with a broad ‘background’ which
might obscure the analysis of the 1000–1500MeV mass
range [4, 5]; secondly he argues that it has not been identi-
fied definitively in Cern–Munich data [4, 5]. The weakness
of these arguments is that no attempt has been made to re-
fit the data where f0(1370) has been identified. The main
objective of the present work is to do just that.
The earliest evidence for the f0(1370) came from ex-

periments on ππ→KK at the Argonne and Brookhaven
laboratories in the late 1970’s. A peak was observed in the
S-wave at 1300MeV in three sets of data: Cohen et al. [6],
Pawlicki et al. [7] and Etkin et al. [8]. In those days it
was called the ε(1300). Further evidence appeared in the
years 1992–96 from several experiments in quick succes-
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sion. Amsler et al. reported a peak in the ηη S-wave at
∼ 1400MeV in Crystal Barrel data on p̄p annihilation at
rest into ηηπ0 [9] (as well as a further peak at 1560MeV,
later identified as f0(1500)). Gaspero reported a 0

+ state
in 4π at 1386±30MeV in p̄d bubble chamber data at rest
in the reaction p̄n→ 2π+3π− [10]; the Obelix collaboration
quickly confirmed this observation in n̄p→ 3π+2π− [11],
quoting a mass of 1345±12MeV. Crystal Barrel reported
a similar 0+ state in 4π at 1374±38MeV in p̄p annihilation
at rest to (π+π−π0π0)π0 [12].
The earliest fits in which f0(1370) and f0(1500) ap-

peared together were made using early low statistics Crys-
tal Barrel data on p̄p→ 3π0 at rest [13–15]. Publica-
tions using the full statistics data (used here) appeared in
1995 [16] and 1996 [17]. The latter work involved a simul-
taneous fit [18] to Cern–Munich data on ππ→ ππ [19] and
data on ππ→KK. The observation of nearby f0(1370)
and f0(1500) states, both dominantly non-strange, ex-
cited interest in the 0+ glueball. Further extensive studies
of f0(1370) and f0(1500) by Crystal Barrel, Obelix and
Omega collaborations may be traced via the Particle Data
tables [20].
The present work fits simultaneously the 5 most defini-

tive sets of data available to me. The first two are Crystal
Barrel data on p̄p→ 3π0 at rest in liquid hydrogen [17] and
gaseous hydrogen. These two sets of data allow a clean sep-
aration of annihilation from 1S0 and

3P1 p̄p states: P -state
annihilation is ∼ 13% in liquid and 48% in gas. The com-
bined fit also includes two sets of data for p̄p→ ηηπ0 in
liquid and gas. There are visible f0(1370) and f0(1500)
peaks in both of these sets of data. The fifth definitive set
of data comes from BES II for J/Ψ → φπ+π−. There is
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a visible ππ peak at 1350MeV, attributed to interference
between f0(1370), f0(1500) and f2(1270) [21]. Those data
are refitted with and without inclusion of f0(1370).
Finally, an earlier analysis fitted data on ππ→KK and

ηη [22]; this analysis also fitted Kloe data on φ→ π0π0γ
and ηπ0γ. The ππ→KK data suggest the presence of
f0(1370) but cannot be considered definitive compared
with the other sets of data. This analysis remains consis-
tent with parameters of f0(1370) found here.
The Particle Data Group quotes very large errors for

mass and width of f0(1370): (1200–1500)− i(150–250)
MeV. From the present analysis, the error on the mass is
very small: ±15MeV from systematics. The resonance will
still be referred to as f0(1370), despite the fact that its
peak position in the ππ channel comes out nearly 100MeV
lower. The Particle Data Group appears to be influenced
by large variations in masses and widths fitted to 4π data.
These variations are due to the fact that there has been no
serious attempt to include σ→ 4π in these analyses. A ma-
jor objective here is to treat fully the dispersive effects due
to the opening of the 4π threshold, to which σ, f0(1370)
and f0(1500) all couple strongly.
The full form of the Breit–Wigner resonance formula,

f =
1

M2− s−m(s)− iMΓtotal(s)
(1)

contains a real dispersive term m(s) [23], which for the 4π
channel reads

m(s) =
s−M2

π

∫
ds′MΓ4π(s

′)

(s′− s)(s′−M2)
. (2)

We shall find that m(s) is large, indeed larger than (M2−
s) in the Breit–Wigner denominator. It turns out that this
places severe limitations on the ratio Γ2π/Γ4π which can
be fitted to data. This point was not appreciated in earlier
work. Nevertheless, a good solution emerges naturally.
Here there is an interesting conclusion. The fit includes

explicitly the s-dependence of the 4π channel, as far as
present data allow. However, the amplitude still produces
an Argand diagram very close to a circle and hence similar
to a simple pole. This justifies to some degree the common
usage of a simple Breit–Wigner formula in fitting data.
A third point concerns the coupling to 4π by the broad

component in the ππ S-wave related to the σ pole; this
component will be called σ as a short-hand. It plays an es-
sential role in fitting all data where a ππ pair is produced.
Let us review the situation briefly.
The ππ S-wave phase shift reaches 90◦ at ∼ 900MeV.

There is an Adler zero in the elastic amplitude at s �
m2π/2, just below the ππ threshold. The resulting ampli-
tude rises approximately linearly with s. In production
data from E791 [24] and BES II [25], a strong peak is ob-
served at∼ 500MeV. Both these production data and elas-
tic scattering may be fitted with the same Breit–Wigner
denominator, but with an s-dependent width and with
different numerators for production and elastic cases; for
elastic scattering, the numerator contains the Adler zero,
whereas for the BES II production data fitted here it is con-
sistent with a constant. The same variation of the phase

shift with s is observed in elastic scattering and production
data from 450 to 950MeV within errors of ∼ 3.5◦ [26]. The
large displacement of the pole from 900MeV arises from
the s-dependence of the width; the Cauchy–Riemann rela-
tions control the s-dependence of the real and imaginary
parts of the amplitude as one extrapolates from the phys-
ical s-axis.
The fit of [22] to ππ → KK and ηη data and the

Kloe branching ratio for φ→ π0π0γ determines ratios of
coupling constants for the σ coupling to KK and ηη:
g2(KK)/g2ππ = 0.6±0.1 and g

2
ηη/g

2
ππ = 0.2±0.05. The re-

maining unknown is the coupling of σ to 4π. This will play
an essential role in the work reported here.
A vital question is whether this coupling to 4π elimi-

nates the requirement for the f0(1370). Tornqvist has sug-
gested [27, 28] that a second pole could appear in the σ
amplitude due to the opening of the 4π threshold. Could
this explain f0(1370) as a non-qq̄ state? A related point
is that Maiani et al. have suggested that f0(1370) may be
a molecular state [29].
The layout of the paper is as follows. Section 2 discusses

the formalism and gives equations. Amplitudes are ex-
pressed in terms of T -matrices for reasons discussed there.
This raises some issues concerning how to fit elastic scat-
tering. Readers interested only in results may skip this
section, but the issues going into the formulae are outlined
in words for the general reader. It is important to add that
extensive fits to Crystal Barrel and other data have been
made by Anisovich and Sarantsev, using K-matrix tech-
niques [30]. These analyses produce results closely simi-
lar to the present work, and there is no conflict between
the two analyses: they should be regarded as complemen-
tary views. The K-matrix analyses use several sets of data
not available to me, for example Crystal Barrel data on
p̄p→KKπ. Their conclusion is that f0(1370) is needed,
with mass and width in close agreement to what is found
here. However, they do not address the question of how
much the fit changes if f0(1370) is omitted.
Section 3 is the heart of the paper, concerning fits to

data with and without f0(1370). A suggestion made by
Ochs is that the amplitude for the ππ S-wave should be
fitted freely in magnitude and phase in bins of ππ mass,
without assuming a Breit–Wigner form. Over the limited
mass range 1100–1460MeV, this is done and confirms the
assumption of a resonance form for the amplitude.
Section 4 describes the simultaneous fit made to Cern–

Munich data on ππ elastic scattering. They can be fitted
slightly better with f0(1370) than without, but cannot be
considered definitive on this question. Section 5 describes
the fit to ηηπ0 data; there is a visible peak in these data,
sufficient alone to justify the existence of f0(1370).
Section 6 describes the fit to BES data on J/Ψ →

φπ+π−. An important detail is that these data, together
with data on J/Ψ → ωππ [25] and ωKK [31] require
the existence of an f0(1790) distinct from f0(1710). The
φππ data contain a clear ππ peak at 1790MeV. Data on
φππ and φKK final states require a ratio BR[f0(1790)→
ππ]/BR[f0(1790)→KK]> 3 [21]. Data on J/Ψ → ωKK
contain a strong KK peak due to f0(1710); this peak is
completely absent from ωππ data which require
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BR[f0(1710)→ ππ]/BR[f0(1710)→KK]< 0.11 with 95%
confidence. A single resonance must have the same branch-
ing ratios in all sets of data, whereas these data differ in
branching ratio by at least a factor 22. So two separate
resonances are required. Unfortunately, the PDG ignores
these decisive results and continues to lump f0(1790) with
f0(1710). In the present fits to p̄p→ 3π0 data, f0(1790) is
included together with f0(1370) and f0(1500), though its
eventual contribution to the data is small.
Section 7 makes brief remarks on data for ππ→KK,

and Sect. 8 remarks on the need for further analyses where
the opening of thresholds leads to large dispersive effects.
Section 9 makes concluding remarks.

2 Discussion of formulae

There are two obvious ways of expressing amplitudes,
using K-matrices or T -matrices. Each has some advan-
tages, but also limitations. It seems likely that neither is
perfect, so approximations are needed in either case.
Resonances appear directly as poles of the T -matrix.

The ππ S-wave is of primary concern. For this ampli-
tude,K-matrix poles are displaced strongly from T -matrix
poles. For elastic scattering, K ∝ tan δ (where δ is the
phase shift), and K-matrix poles are at ∼ 700 and
1200MeV, whereas the f0(980) pole is at 998− i17MeV.
In fitting production data, e.g. p̄p→ 3π0, it is obvi-

ously advantageous to use T -matrices, because resonances
are T -matrix poles. The primary objective of the present
work is to test whether the f0(1370) is needed or not. It
is necessary to move its mass, width and couplings to all
decay channels in steps, so as to examine the effect on χ2.
This cannot be done readily using K-matrices, since the
f0(1370) is built out of a combination ofK-matrix poles. It
is also necessary to remove f0(1370) from the fit and again
test χ2. This cannot be done in a controlled way using
K-matrix poles: if one K-matrix pole is removed, all res-
onances are affected. For this reason, amplitudes will be
written directly in terms of T -matrices.
There is a second related point. It is well known that

minimisation routines converge best when expressed in
terms of eigenvectors, i.e. T -matrix poles. Weak or ques-
tionable resonances appear as weak eigenvectors and can
be recognised immediately from the error matrix of the fit.
Yet another consideration is that earlier work fit-

ting the σ pole and Cern–Munich data was done using
T -matrices [32]. The formulae used there are readily ex-
panded to incorporate the 4π channel. Also Ref. [22] fitted
data on ππ→KK and ηη and also Kloe data with T -
matrices; it is valuable to maintain consistency with that
analysis, for comparison of results.

2.1 Elastic scattering

There are however questions about how to deal with elastic
scattering. Below theKK threshold, the amplitude is con-
fined to the unitary circle. Both f0(980) and σ contribute,
as do the low mass tails of further resonances. Experiment

shows directly how to treat the overlap of these resonances.
In Cern–Munich data, the ππ phase shift rises dramatically
near 1 GeV from ∼ 90 to 270◦ due to the narrow f0(980).
The appropriate treatment below the KK threshold is to
add phases, hence multiply S-matrices: S = exp(2iδ).
Above the inelastic threshold, multiplying S-matrices

gives a fit of rather indifferent quality. It is clear that
other factors must be relevant. If one solves a relativistic
Schrödinger equation using a trial potential which repro-
duces σ, f0(980) and f0(1370), the solution is automati-
cally unitary and analytic. One finds that amplitudes differ
from both (i) the product of individual T -matrices for each
resonance, (ii) the sum ofK-matrices. Neither gives an ac-
curate parametrisation. The main problem appears to be
that resonances mix via processes of the form < σ|ππ|f0 >
or other intermediate channels KK, ηη, etc. Mixing is
strong for elastic scattering, since the amplitudes are at the
unitary limit when one takes account of all channels. The
mixing gives rise to well known level-repulsion. This repul-
sion is still highly significant one full-width away from the
resonance mass.
Formulae for mixing have been given by Anisovich,

Anisovich and Sarantsev [33] and will be reproduced here
in a slightly modified notation. For the 2-resonance case,
the denominatorD(s) of one resonance may be written

D11(s) =M
2
1 − s−m1(s)− iM1Γ

tot
1 (s)

−
B12(s)B21(s)

M22 − s−m2(s)− iM2Γ
tot
2 (s)

. (3)

Mixing arises via B12 which in general is complex and may
be s-dependent. The propagatormatrix describing two res-
onances is then

D̂ =

∣∣∣∣D11 D12
D21 D22

∣∣∣∣
=

1

(M21 − s−m1(s)) (M
2
2 − s−m2(s))

×

∣∣∣∣M
2
2 − s−m2(s) B12
B21 M21 − s−m1(s)

∣∣∣∣ . (4)

Because σ overlaps strongly with f0(980), f0(1370) and
f0(1500), this mixing has been included explicitly in fitting
elastic data. It turns out that inclusion of mixing between
these pairs of states leads to an excellent fit using constant
values of B12.
It is also instructive to expand the denominator of the

last term of (4) off resonance using the binomial theorem.
The result is

D11(s) =
[
M21 − s−m1(s)− iM1Γ

tot
1

]

−
B12B21

M22 − s

(
1+
m2(s)+ iM2Γ

tot
2

M22 − s

)
. (5)

From the last term, one gets contributions of the same
sign to ReD11(s) and ImD11(s), while from the first
term [M21 − s− im1− iM1Γ

tot
1 ] contributions have oppo-

site signs. The result is to rotate the phase of the am-
plitude, which derives purely from D(s). This rotation is
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large when resonances overlap strongly. Unless the mixing
is included explicitly, one must expect that the resonance
denominator may need to be multiplied by a phase factor
exp(iφ). This was indeed observed in [22], where it was suf-
ficient to take φ as constant. This point will be relevant in
fitting 1−− and 2++ states to elastic data.

2.2 The continuation of amplitudes below thresholds

Consider as an example ππ→KK. It is necessary to con-
tinue this amplitude below threshold; in T -matrix lan-
guage this is the analytic continuation of the T12 com-
ponent. As a result, there are contributions to ππ elas-
tic scattering from sub-threshold ππ→KK → ππ. How-
ever, caution is needed in making this continuation. The
ππ→KK amplitude is proportional to phase space ρ2 =√
1−4M2K/s for the KK channel. Below threshold, this
continues analytically as i

√
4M2K/s−1. The analytically

continued amplitude rises rather strongly below thresh-
old. If one is not careful, this continued amplitude can
make dominant contributions to elastic scattering below
the inelastic threshold. This is counter-intuitive. A par-
ticular case arises for f2(1565), which couples strongly to
ωω. If one does nothing about the large sub-threshold ωω
contribution, it produces big interferences wth the nearby
f2(1270) and can distort rather severely the mass and
width fitted to f2(1270).
The answer to this point is straightforward.Amplitudes

above threshold contain form factors due to the finite ra-
dius of interaction forming the resonance. In [22], data on
ππ→KK were fitted empirically to an exponential form
factor exp(−5.2k2), where k is momentum in the KK rest
frame in GeV/c; a study of f2(1565) in p̄p→ (ωω)π0 at rest
in Crystal Barrel data also requires a form factor above the
ωω threshold of similar strength [34]. The analytic contin-
uation can be evaluated below threshold using a dispersion
integral. This is not an accurate procedure because of un-
certainties in the ππ→KK amplitude above the available
mass range. However, the qualitative feature emerges that
a rapidly falling form factor is required below threshold as
well as above. In [22] this sub-threshold form factor was fit-
ted to Kloe data with the result exp(−8.4|k|2). This empir-
ical cut-off will be adopted here for sub-threshold coupling
to KK, ηη and ωω.

2.3 Treatment of the 4π channel

The 4π phase space volume may be modelled [18] by the
production of two resonances (ρρ or σσ):

ρ4π(s) =

∫ (√s−2mπ)2
4m2π

ds1
π

∫ (√s−√s1)2
4m2π

ds2
π

8|p||p1||p2|
√
ss1s2

×|T1(s1)|
2|T2(s2)|

2FF (s) , (6)

where p1 and p2 are momenta of pions from decays of each
resonance in its rest frame, and p stands for the momenta
of the ρ or σ in the centre of mass frame. In [23], exten-
sive illustrations are shown of the dependence of ρ4π(s) on

exponential form factors FF . These factors begin to play
a significant role at ∼ 1.45GeV. A form factor

FF = exp[−(s−1.452)] (7)

is chosen in present work with s in GeV2. If one were fit-
ting data on ππ→ 4π, this form factor would be rather
important. However, for the present study of f0(1370) and
f0(1500)→ ππ it has only rather small effects within er-
rors. This is because the Γ4π term in the Breit–Wigner
denominator cuts off the ππ channel strongly at high mass;
the f0(1370)→ ππ amplitude is already quite small at
1.45GeV, where the form factor begins. The f0(1500) is
sufficiently narrow that the effect on the line-shape from 4π
inelasticity is rather small. The one place where the form
factor is important is in suppressing high mass contribu-
tions tom(s).
Figure 1 shows ρρ phase space as the dashed curve and

σσ phase space as the chain curve. They are rather similar.
Their relative contributions to each resonance are poorly
known. The strategy here is to parametrise ρ4π empirically
as

ρ4π =

√
1−16m2π/s

1+exp[Λ(s− s0)]
. (8)

The parameters Λ and s0 in the Fermi function of the de-
nominator are optimised in the overall fit, with the result
Λ= 3.39GeV−2, s0 = 3.238GeV

2. The result is shown by
the full curve on Fig. 1.
The dispersive contribution m(s) to Breit–Wigner am-

plitudes is evaluated numerically at 10MeV steps of mass,
and the programme interpolates quadratically in mass
using the nearest 3 bins. The dispersion integral is the same
for σ and all f0’s, except for (i) a subtraction at the res-
onance mass M, where the real part of the amplitude is
zero, (ii) a scaling factor depending on the coupling con-
stant to 4π. The sub-routine for doing the principal-value
integral is available from the author if it is needed in other
cases.

Fig. 1. 4π phase space for ρρ (dashed), σσ (chain curve) and
the fit adopted here (full curve)
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2.4 Explicit equations for resonances

Formulae for the σ amplitude follow the same form as used
in earlier work on the σ pole [32], except for the inclusion of
m(s) for 4π. Equations will be repeated here for complete-
ness. The elastic amplitude is written

T11(s) =N(s)/D(s) . (9)

The numerator contains an Adler zero at s= sA � 0.41m2π.
For fits to BES data on J/Ψ → ωππ, the numerator is
taken as a constant. Channels ππ, KK, ηη and 4π will
be labelled 1 to 4. The propagator of the σ is given
by

D(s) =M2− s− g21
s− sA
M2− sA

zs−m(s)− iMΓtot(s)

(10)

MΓ1(s) = g
2
1

s− sA
M2− sA

ρ1(s) (11)

g21 =M(b1+ b2s) exp[−(s−M
2)/A] (12)

j1(s) =
1

π

[
2+ρ1lne

(
1−ρ1
1+ρ1

)]
(13)

zs = j1(s)− j1(M
2) (14)

MΓ2(s) = 0.6g
2
1FF

2
2 (s) (15)

MΓ3(s) = 0.19g
2
1FF

2
3 (s) (16)

FFi(s) = exp
(
−α|k|2i

)
(17)

MΓ4(s) =Mg4ρ4π(s)/ρ4π(M
2) . (18)

The value of α is 5.2 above thresholds and 8.4 below. The
numerical coefficient 0.19 in (16) has been revised very
slightly using the branching ratio fitted in Sect. 5 between
ηη and ππ. Values of b1, b2, A and M of (12) are given
below in Table 6.
Resonance denominators for f0(1370), f0(1500) and

f0(1790) are taken in the form of (1). An important de-
tail is that the factor (s− sA)/(M2− sA) of (10) is also
used for Γ1, Γ2 and Γ3 of f0(980), f0(1370), f0(1500)
and f0(1790). That is, the Adler zero is included into
the widths of all 0+ resonances. Otherwise, parameters
of f0(980) are taken initially from the BES determin-
ation [21], but are re-optimised within the sum of statis-
tical and systematic errors when fitting present data. For
f0(1500), the ratio Γ2/Γ1 is taken from the PDG aver-
age. For f0(1370), it is taken from [30], where extensive
Crystal Barrel data on p̄p→KKπ are fitted. However,
in practice the ratio Γ2/Γ1 has rather have little effect
here; only the full width of the resonance is crucial. Values
of Γ3/Γ1 are determined in Sect. 5, but again have lit-
tle effect. The same ratios are used for f0(1790) as for
f0(1500), in the absence of good data for f0(1790) in the
KK channel; since the f0(1790) signal is weak, this is
of no consequence. A trial has been made including into
f0(1500) a weak coupling to ωω with a coupling con-
stant a third of that for known decays to ρρ; the effect is
negligible.

The f2(1270) is parametrised using

Γ2π(s) = Γ2π(M
2)
k2D2(k

2)

k2rD2(k
2
r)

(19)

Γ4π(s) = Γ4π(M
2)
ρ4π(s)

ρ4π(M2)
. (20)

Here k is the pion momentum in the f2 rest frame and
kr is the value on resonance. The D2 are Blatt–Weisskopf
centrifugal barrier factors. Expressions for them are given
in [18] at the end of Sect. 2.1; the barrier radius optimises
at 0.75±0.04 fm. The KK and ηη channels are treated in
the same way. From the Particle Data book, Γ2π/Γtot =
0.847 on resonance. This value is not sufficiently accurate
for fitting Cern–Munich data and is re-optimised to 0.802,
since the relative heights of ρ(770) and f2(1270) are im-
portant. This value may be accounting for a form factor in
πp→ ππp over the mass range between these two states.
The ρ(770) is parametrised like f2(1270) using the D1

centrifugal barrier factor. Its mass and width optimise at
778 and 153MeV, close to PDG values. Trials were made
including coupling to KK and ωπ, but had no significant
effect on the fit to Cern–Munich data compared with un-
certainties in the ρ(1450) contribution.
The f2(1565) presents a problem. It is known from

Crystal Barrel data [34] that it couples strongly to ωω. It is
expected to couple to ρρ a factor ∼ 3 more strongly. How-
ever, there are unfortunately no data to confirm this strong
ρρ coupling. Consequently it is dangerous to fit f2(1565)
with the full s-dependence and m(s) used for f0’s. In view
of the fact the f0(1370) and f0(1500) line-shapes come out
close to those of simple poles, it is therefore fitted with
a Breit–Wigner amplitude of constant width, except that
the ωω channel is added explicitly. This channel has an im-
portant effect in cutting off the line-shape above resonance,
see Fig. 9 below.
Other 1−−, 2++, 3−− and 4++ resonances are likewise

fitted with Breit–Wigner amplitudes of constant width, for
simplicity and ease of comparison with other work. In fit-
ting elastic data, each amplitude is multiplied by a fitted
factor exp(iφ). This is done rather than including mix-
ing between all resonances, since the number of mixing
terms becomes too large, and furthermore the resonances
are poorly separated at present.

3 Fit to p̄p→ 3π0 at rest

Figure 2 shows the Dalitz plot for data in liquid hydrogen
at rest; it is similar for gaseous hydrogen. [This figure is
from [16] where f2(1520)≡ f2(1565)]. Mass projections for
both sets of data are shown in Fig. 3. There are conspicu-
ous peaks due to f2(1270) and f0(1500)+f2(1565). Narrow
bands due to f0(980) are also visible. Ingredients in the fit
are σ, f0(980), f2(1270), f2(1565), f0(1370), f0(1500) and
a weak f0(1790).
P -state annihilation is best determined by data in gas,

where it makes up 48% of events, close to the predicted
50% from calculations of Stark mixing [35]. This is mostly
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Fig. 2. The Dalitz plot for p̄p→ 3π0 in liquid hydrogen

annihilation with orbital angular momentum L= 1 in the
transition, but a minor detail is that there is a little L= 3
production of π0f2(1270) and π

0f2(1565). The fit to liquid
data uses 3P1 and

3P2 components scaled down between
gas and liquid by a factor which optimises at 0.155. The
eventual P -state fraction is 12.8% in liquid.
A warning is that amplitudes for 1S0,

3P1 and
3P2→

f2(1270) or f2(1565) are poorly separated without using
information from interferences between the three π0π0

contributions, which will be labelled 12, 23 and 13. The
full angular dependence of amplitudes involves d-matrices
which take account of rotations of axes between 12, 23 and
13 combinations:

3P1, Jz =+1 : 3 cosα sin θ cos θ− sinα(3 cos
2 θ−1)

(21)
3P1, Jz = 0 :

√
2[3 sinα sin θ cos θ+cosα(3 cos2 θ−1)]

(22)

Fig. 3. Fits to the ππ mass proection in
(a) liquid, (b) gas

3P2, Jz = 2 : cosα sin
2 θ− sinα sin θ cos θ (23)

3P2, Jz = 1 : sinα sin
2 θ+cosα sin θ cos θ . (24)

For the 12 combination, θ is the angle in the π0π0 rest
frame between π1 and the recoil π3; α1−3 are lab angles of
12, 23 and 13 combinations in their plane.
It turns out that 3P2 annihilation dominates strongly

over 3P1 for both f2(1270) and f2(1565). Visible evidence
for 3P2→ f2(1565) is the enhancement in Fig. 2 near the
centre of each band just above 1500MeV; this is how the
Asterix collaboration discovered f2(1565) in gas data [36].
If 3P1 annihilation to f2(1270) were large, there would be
strong constructive interference between any two crossing
bands near cos θ= 0.6; there is no sign of any such enhance-
ment in the data.

3.1 The σ amplitude in 3π0 data

The σ is very broad, extending over the full ππ mass
range from 0.27 to 1.74GeV. Over such a large range, some
s-dependence is to be expected in the numerator N(s)
of the production amplitude. The s-dependence required
by the data is quite different between elastic scattering
and the production process. An important feature of the
data is an area of low intensity at the centre of the Dalitz
plot of Fig. 2. Fitting this feature is delicate and demands
s-dependence in N(s).
Extensive trials have been made using a numerator for

the σ amplitude of the form

N(s) =A[1+Bs+C/(s+ s0)] , (25)

with s0 > 0. What emerges is that (a) either complex B or
complexC is definitely required and canfit the datawell, (b)
including both B and C over-parametrises the amplitude,
i.e. strong correlations develop between B, C and s0. It is
better to tolerate a small increase in χ2, so as to keep essen-
tial features clear withminimal correlations between fitting
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parameters. Final fits were made with the form A(1+Bs).
Tests were also made including amplitudes arising from the
opening of theKK threshold, i.e.∝ TπK . These turned out
to be negligible. A fit was also tried using a dependence on
spectator momentum k given by the diffraction pattern of
a black disk, but this gave a poor fit.

3.2 Prelimiminary remarks on the goodness of fit

The data are available to me only in the form of binned
data, rather than individual events. Initial fits revealed
that some edge bins have abnormally high χ2. All lie im-
mediately at the edge of the Dalitz plot. This is actually
visible on Fig. 2. The same effect is observed for ηηπ0 data.
The obvious explanation of these bad bins is that the ac-
ceptance near the edge of the Dalitz plot may be incor-
rectly assessed. These bad bins have been removed without
any significant effect on fitted amplitudes.
The resulting χ2 is 2.83 per bin for 3π0 data in liquid,

2.85 in gas, 2.64 for ηηπ0 in liquid and 2.70 in gas. A close
inspection of discrepancies over the Dalitz plots reveals
only an apparently random scatter, with no clear system-
atic effects. The mean χ2 is 2.85 per bin. To allow for this,
all values of χ2 quoted in the paper are scaled down by
a factor 2.85 so that the average χ2 becomes 1 per bin.
This is necessary for a correct assessment of the signifi-
cance level of observations.

3.3 Fits including f0(1370)

The Argand diagram for one π0π0 1S0 combination is
shown in Fig. 4a; individual σ and f0(1370) components
and their coherent sum are shown in other panels. At low
mass, there is a conspicuous loop which is well fitted with
the σ pole. This feature was correctly diagnosed by Ishida
et al. [37]. They fitted only the ππ mass projection, so the
present fit is much more accurate.
At higher mass, there is a loop due to f0(980). Here

a detail needs explanation. Figure 5 shows the Argand di-
agram for f0(980) alone in ππ→ ππ. A mean kaon mass
of 495.7MeV is assumed. The KK inelasticity sets in
very rapidly at threshold, and the peak inelasticity is at
1.010GeV. Thereafter, the inelasticity parameter η rises
again slowly, The result i s a definite ‘dent’ in the Argand
diagam at 1.01GeV.
Returning to Fig. 4a, there is a further loop at

∼ 1300MeV, followed by a large loop due to f0(1500). Fig-
ure 4a resembles closely fits made in 1996 [17]. The loop at
1300MeV is the feature which is crucial to the existence of
f0(1370). The vital questions are:

– (i) is this loop really needed?
– (ii) could it be fitted with σ and f0(1500) alone, without
the need for f0(1370)?

3.4 A suggestion of Ochs

Ochs has questioned whether the loop at 1300MeV is an
artificial feature of the way amplitudes are parametrised

Fig. 4. Argand diagrams for the ππ S-wave in liquid hydrogen;
masses are marked in GeV

Fig. 5. The Argand plot for f0(980) alone; masses are marked
in GeV

in terms of resonances (or backgrounds). My comment
is that the parametrisation must be analytic; resonance
forms used here satisfy this condition. Nonetheless, he has
suggested fitting the ππ S-wave amplitude freely in magni-
tude and phase in bins of ππ mass, to see how definitively
the data require the loop at 1300MeV.
It is not possible to do this over the entire Dalitz plot,

because of strong interferences between one low mass ππ
contribution and two at higher mass. It is necessary to rely
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on the strong σ loop at low mass and also the existence
and parameters of the f0(1500), which is well known to-
day from other data; it is also important to constrain the
f0(980) within bounds set by BES II data.
It is, however, straightforward to fit the S-wave am-

plitude freely in magnitude and phase in bins from 1100
to 1460MeV, i.e. over the 1300MeV mass range. In this
test, parameters of f0(1500) and f0(980) are allowed to re-
optimise within the narrow ranges allowed by other data.
For theσ, coefficientsAand b ofN(s) are set free, but hardly
move because they are determined by elastic data. Results
are shown inFig. 6 by crosses (indicating errors).Deviations
from the fit of Fig. 4a, shown by the full curve, are barely
above statistics, except for the thirdpoint (labelled 3)which
moves by ∼ 2.5 standard deviations. The agreement be-
tween the binnedfit andFig. 4a rules out the possibility that
the 1300MeV loop is an artefact of the parametrisation.
As one example, it is not possible to replace the 1300MeV
loop by a narrow cusp arising from interference effects; such
a cusp will be illustrated below for the ππ D-wave.

3.5 Properties of the fitted f0(1370)

The fitted dispersive contribution m(s) for f0(1370) is
shown in Fig. 7. Near 1300MeV, it varies roughly linearly
with s, like the term (M2−s) in the Breit–Wigner denomi-
nator. However,m(s) is a factor∼ 1.6 larger than (M2−s),
This in an unusual feature, showing that care is needed in
treating the 4π threshold correctly. It also leads to some
effects which had not been forseen.
The termm(s) is directly linked toMΓ4π(s) by the dis-

persion relation (2) of Sect. 1. This relation is reproducing
effects of the loop diagram of Fig. 8. Results are analogous
to vacuum polarisation, and lead to renormalisation effects
in the Breit–Wigner denominator if the magnitude of Γ4π
is scaled up or down.

Fig. 6. The Argand diagram for the ππ S-wave (full curve)
compared with free fits to magnitude and phase in nine 40MeV
wide bins of mass from 1100 to 1460 MeV (crosses)

Fig. 7. The dispersive term m(s) for f0(1370)

A consequence in the combined fit to p̄p→ 3π0 and
elastic data is that there is a tight constraint on the ratio
Γ2π/Γ4π. Conversely, there is considerable flexibility in the
absolute value of Γ2π which can be fitted. Table 1 shows
pairs of values fitted to data; Γ2π and Γ4π are almost lin-
early related until Γ2π approaches zero, when the fit dete-
riorates rapidly. The final fit uses the lowest value of Γ2π
giving a satisfactory fit, namely 325MeV. A surprise is that
f0(1370) is fairly elastic on resonance, though the inelas-
ticity increases rapidly thereafter. Over the range of values
shown in Table 1, there is almost no visible change in the
line-shape of f0(1370). This is a renormalisation effect. It is
illustrated in Fig. 9b for two widely different values of Γ2π .

3.6 Lineshapes

Figure 9 shows the line-shapes of σ, f0(1370), f0(1500) and
f2(1565) in ππ elastic scattering. The f0(1370) is almost

Fig. 8. The dispersive term m(s) for f0(1370)

Table 1. Parameter variations with Γ2π of
f0(1370); units are GeV

Γ2π M Γ4π Γ4π/Γ2π χ2

0.80 1.3113 0.1958 0.245 3519
0.65 1.3090 0.1472 0.226 3507
0.50 1.3093 0.1047 0.209 3505
0.40 1.3093 0.0766 0.192 3502
0.30 1.3096 0.0464 0.155 3500
0.25 1.3089 0.0318 0.127 3504
0.20 1.3114 0.0181 0.091 3512
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Fig. 9. Line-shapes of σ, f0(1370), f0(1500) and f2(1565) in
ππ→ ππ, normalised to 1 at their peaks; the dashed curve for
f0(1370) shows th e effect of changing Γ2π from 325 to 800MeV

degenerate with f2(1270), which explains why it has been
hard to observe experimentally. The peak of the inten-
sity is at 1282MeV in elastic scattering, though the phase
shift goes through 90◦ at M = 1309MeV. A similar pole
mass is quoted by Anisovich and Sarantsev [30]: 1306−
i147MeV for their solution 1 and marginally different for
two alternative solutions. Although their parametrisation
of amplitudes in terms of K-matrices is quite different to
the approach adopted here, it is clear that their eventual fit

Fig. 10. The Argand plot for the ππ D-wave in 3π0 data in
liquid hydrogen; masses are shown in GeV

Fig. 11. Argand diagrams for the ππ S-wave in 3P1; annihila-
tion; masses are shown in GeV

is very similar to mine, and there is no serious disagreement
between the two types of formalism.
The f0(1370) and f0(1500) are asymmetric, because the

rapidly rising Γ4π in the Breit–Wigner denominator cuts
off the intensity at high mass. The f2(1565) is likewise cut
off strongly at high mass by the opening of the ωω thresh-
old. It peaks exactly at the ωω threshold and has a half-
width of 131MeV below resonance.

3.7 The ππ D-wave

Figure 10 shows the Argand diagram for 1S0 annihilation
to the ππ D-wave. An interesting feature, already noted
in [17], is the appearance of a cusp at 1420MeV, almost
midway between f2(1270) and f2(1565). No resonance can
be accomodated at 1420MeV by fitted magnitudes and
phases of the amplitude. However, the PDG lists a state
f2(1430). It seems likely that this is an artefact due to
similar cusps in other reactions; it is an acute observa-
tion on the part of the experimental groups finding the
effect.

3.8 P -state annihilation

Figure 11 shows Argand diagrams for 3P1 annihilation
to one ππ S-wave combination. The result comes almost
purely from data in gas. There is some similarity to re-
sults in liquid, but definite differences; for example, the
f0(980) contribution is almost negligible. There is again
a loop near 1300MeV in Fig. 11b. However, interference
between f0(1370) and f0(1500) plays a decisive role in ob-
taining a good fit.

3.9 Fits without f0(1370)

The entire fit has been re-optimised without f0(1370), re-
fitting all parameters. The result is that (renormalised) χ2

increases for 3π0 data in liquid by 1040, and by 1088 for
data in gas. So the significance level of f0(1370) is slightly
over 32 standard deviations in liquid and close to 33 in gas.
These are essentially independent, since 1S0 annihilation
to f0(1370) is determined almost purely by liquid data and
3P1 annihilation by gas data.
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Attempts were made to improve the fit using different
parametrisations for the σ, e.g. N(s) ∝ A[1+C/(s+ s0)];
however, that choice actually gave a slightly worse fit and
other types of fit gave no significant improvement.
Figure 12 shows the resulting Argand diagrams for the

ππ S-wave in (a) liquid, (b) gas. The fit tries to remedy
the situation by using the σ amplitude as a replacement
for f0(1370); the main latitude lies in increasing the inelas-
ticity of σ to 4π. This fails because the amplitude cannot
move round the required loop quickly enough, resulting
in a very poor χ2; one can see on Fig. 12 that the size of
the loop at 1300MeV has increased compared with that
of Fig. 4. For the σ amplitude, the inelasticity to 4π rises
slowly over the entire mass range 1200 to 2100MeV. This
produces a slow loop on the Argand diagram, see Fig. 4b
for liquid (L). It is not possible to fit the narrow f0(1370),
whose full-width at half-maximum is 207MeV, with this
slow loop.
Tornqvist [27, 28] has remarked that the dispersive con-

tributionm(s) to the σ amplitude could induce a second σ
pole near the 4π threshold. All fits have been examined for
such a pole, but there is no trace of it in any fit.
The conclusion is that a narrow f0(1370) is highly sig-

nificant. However, one should not rely purely on χ2. What
adds considerable confidence is that fitted values of mass
and width are in excellent agreement between two almost
independent determinations in liquid data and gas. The
value of Γ2π is held fixed at 325MeV in both cases. Then
the fitted value of Γ4π on resonance changes by only 4MeV.
Parameters are shown in Table 2. One must add a system-

Fig. 12. Argand plots for the ππ
S-wave in 3π0 data in liquid (L)
and gas (G) with f0(1370) omit-
ted; masses are shown in GeV

Table 2. Parameters in MeV for f0(1370) in (a) liquid, (b) gas, (c) combined, and f0(1500)
for the combined fit

(a) (b) (c) (d)

Γ2π(M
2) 325 325 325 127

M 1308 1312 1309±1(stat)±15(syst) 1503±1(stat)±6(syst)
Γ4π(M

2) 53 56 54±2(stat)±5(syst) 138±4(stat)±5(syst)
Peak 1282 1485
Half-height 1165 and 1372 1418 and 1540
FWHM 207 122

atic error common to both determinations; the systematic
errors shown in Table 2 cover the entire range of all ob-
served fits to the six sets of data with any parametrisation
ofN(s) for the σ amplitude.
For those who wish to reproduce f0(1370) and f0(1500)

with less elaborate formulae than used here, the ad-
vice is to aim to reproduce the peak and half-heights
of Table 2.
A further test has been made removing the phase vari-

ation of f0(1370). There is an increase in χ
2 of 165, i.e.

nearly 13 standard deviations. However, the magnitude of
the fitted f0(1370) increases by a large amount and the σ
component decreases. So the non-resonant f0(1370) is then
obviously simulating a large part of the σ amplitude. This
confuses the interpretation of this test.

3.10 f0(1370) line-shape in 4π

Figure 13a shows as the full curve the line-shape of f0(1370)
in ππ→ ππ; the dotted curve shows the line-shape of a sim-
ple Breit–Wigner amplitude of constant width with the
same mass and width on resonance. The dashed curves
show estimates of what is predicted in ππ→ 4π. There is
some uncertainty concerning form factors at high mass.
Fortunately these form factors play little role in fitting
present data, because the amplitude in the 2π channel is
already quite small at 1.45GeV, where the form factor be-
gins to have an effect. The three curves illustrate results
using form factors exp−α(s−1.452) (with s in GeV2); the



D.V. Bugg: A study in depth of f0(1370) 65

Fig. 13. (a) Line-shapes of f0(1370)
for 2π (full curve), a Breit–Wigner am-
plitude with constant width (dotted),
and for 4π (dashed), (b) the phase
angle measured from the bottom of
the Argand plot (full curve) and for
a Breit–Wigner amplitude of constant
width (dashed); horizontal lines mark
phase shifts of π/2 and π, (c) Argand
plot; masses are shown in GeV

top curve is for α= 0.5, the central one for α= 1.0 and the
bottom one for α = 1.5. These span a reasonable range of
possibilities.
The main conclusion from these curves is that the peak

of the resonance moves quite strongly between 2π and
4π channels because of the difference between ρ2π and
ρ4π. The 2π peak is at 1282MeV and that in 4π is at
1331MeV, i.e. a mass difference of ∼ 50MeV. However, if
one works from the half-heights of the peaks, the differ-
ence is larger. For the 2π channel, half-height is at 1165
and 1372MeV, i.e. a mean of 1269MeV and a full-width at
half maximum (FWHM) of 207MeV. For the 4π channel,
the corresponding half heights are 1241 and 1514MeV, i.e.
a mean of 1377MeV and FWHM= 273MeV. Further data
on ππ→ 4π would be very valuable. In particular, data
separating spins 0 and 2 would help greatly in clarifying the
parametrisation of f2(1565). However, the analysis of these
data must take into account contributions from σ→ 4π;
that has not been done up to the present.
Figure 13c shows the Argand loop for f0(1370) in elas-

tic scattering. The loop is cut off at the left by the effect
of 4π inelasticity. It is remarkable that the loop is very
close in shape to the circle given by a Breit–Wigner reson-
ance of constant width. This provides some support for the
constant width approximation which is frequently used.
The resonance is behaving to first approximation as a sim-
ple pole with appropriate widths to 2π and 4π. However,

Fig. 13b compares the phases for the s-dependent form of
the amplitude (full curve) and constant width (dashed);
these phases are measured from the origin of the Argand
diagram. There is a sizable difference in phases, but only
above the upper half-width of the resonance.

3.11 Parametrisation of m(s)

For convenience, an algebraic parametrisation of m(s) is
given here, to allow reconstruction of the amplitudes for
f0(1370), f0(1500) and σ. It is not possible to find a sim-
ple accurate formula dealing with all three mass ranges.
Instead, formulae will be given which are sufficiently ac-
curate for extrapolations from the physical region to the
poles. This implies weighting the fit tom(s) in the vicinity
of these poles.
The form of parametrisation is guided by the facts that

(a) Γ4π is parametrised as a Fermi function, (b) the dis-
persive term is given approximately by the gradient of this
function. Thenm(s) is expressed as a sum of terms

m(s) =
∑
i

(
ai

(s− si)2+w2i
−

ai

(M2i − si)
2
+w2i

)
. (26)

Table 3 gives numerical values of parameters. Note that the
σ parametrisation applies only to the vicinity of the pole;
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Table 3. Parameters fitting m(s) in units
of GeV

f0(1370) f0(1500) σ

M 1.3150 1.5028 0.9128
a1 3.5320 1.4005 17.051
s1 2.9876 2.9658 3.0533
w1 0.8804 0.8129 1.0448
a2 −0.0427 −0.0135 −0.0536
s2 −0.4619 −0.2141 −0.0975
w2 −0.0036 0.0010 0.2801

Table 4. Pole position on various sheets

State ππ 4π KK ηη Pole (MeV)

f0(1370) + + + + 1299− i187
+ – + + 1309− i43
+ + – + 1293− i180
+ + + – 1292− i177

f0(1500) + + + + 1492− i104
+ – + + 1497− i53
+ + – + 1492− i103
+ + + – 1492− i103

if the full form of m(s) is needed for the σ over the entire
mass range, values may be read from Fig. 7 or the author
will supply numerical tables.
A full account of pole positions on the many possible

sheets is not helpful. The sheets may be labelled by the
sign multiplying i. Table 4 then lists a representative set
for f0(1370) and f0(1500). One sees immediately that the
sign attached to i for KK and ηη has little effect on the
pole position, because these inelasticities are small. What
matters are the signs of i for ππ and 4π sheets. The imagi-
nary part of the pole position changes substantially when
the sign for the 4π sheet changes. This is a familiar ef-
fect of a strong inelastic channel. The experimental line
width is close to the average of the results for the two 4π
sheets.

4 Fits to elastic scattering

Four sources of information on elastic scattering are fit-
ted simultaneously with production data. The first are
Cern–Munich data from πp→ (ππ)n. Secondly, Ke4 data
of Pislak et al. are included and constrain the ππ S-wave
phase shifts up to 382MeV [38]. Thirdly, Caprini et al
have made a prediction of ππ phases using the Roy equa-
tions [39]. Their prediction up to 925MeV is included with
errors which are adjusted to give χ2 = 1 per point. These
predictions are particularly important in constraining the
scattering length and effective range. Amplitudes for ππ
isospin 2 amplitudes are also included, and parametrisa-
tions are given below. Fourthly, BES II data on J/Ψ →
ωπ+π− provide an accurate parametrisation of the σ pole,

as discussed in [32]. The prediction of the lower side of
the σ pole from the Roy equations is precise, but the
BES data determine the upper side more accurately be-
cause of effects arising from the sub-threshold KK and
ηη contributions.
In fitting Cern–Munich data, JP = 0+ contributions

are included from σ and f0’s at 980, 1370, 1500, 1790,
and 2020MeV; the last of these is above the mass range
of data, which finish at 1.89MeV, but it needs to be in-
cluded because of its large width. The f0(1710) is dom-
inantly ss̄ and is not expected to contribute strongly;
any possible contribution is absorbed into the parameters
of f0(1790).
Contributions are allowed for JP = 1− from ρ’s at 770,

1450, 1700, 1900 and 2000MeV, although the ρ(2000) is
included only for completeness. For spin 2, f2(1270) plays
a dominant role, but f2(1565) is definitely needed, as is
some contribution from either or both of f2(1920) and
f2(1950); the latter two however, cannot be separated
cleanly. The I = 2 D-wave is also included, with formulae
discussed in the next subsection.
For spin 3, ρ(1690) plays a strong role, but there is

definite evidence for some additional contribution from
ρ3(1990). Finally, some definite but small contribution
from f4(2040) is needed.
Before going into details, final fits to Cern–Munich mo-

ments are shown in Figs. 14 and 15. Panels are labelled
by L, M of spherical harmonics fitted to data. The fit
is quite adequate, but the eventual χ2 is 3.13 per point.
There is, for example, a definite systematic discrepancy
with the Y (51) moment, Fig. 15. This shows structure
around 1270MeV which cannot reasonably be attributed
to interference with the low mass tail of ρ(1690): the ef-
fect is too large. Near 1550MeV, there are discrepancies
with Y 2 and Y 4 moments, probably because of the ef-
fect of the ρρ threshold on f2(1565); this is not explicitly
included.
The fit to f0(980) is constrained within the linear sum

of statistical and systematic errors quoted by BES for its
mass, g2(ππ) and g2(KK)/g2(ππ). The last of these is
a useful constraint, but the fit does optimise the other two
parameters within the BES errors, showing there is no con-
flict with Cern–Munich and Crystal Barrel data. The mass
and width of the prominent ρ(770) also need to be fit-
ted freely, with the results M = 778MeV, Γ = 153MeV,
in satisfactory agreement with PDG values. A small de-
tail is that its coupling to 4π is included using on reson-
ance the PDG estimate of the branching ratio; including
this effect marginally improves the fit to the tail of the ρ
above 1 GeV.

4.1 I = 2 amplitudes

There are experimental data on π+p→ (π+π+)n and
hence the I = 2 S-wave amplitude. Wu et al. have calcu-
lated the expected inelasticity [40]. These two inputs have
been fitted empirically as follows:

f(I = 2) = (η exp(2iδ)−1)/2i , (27)



D.V. Bugg: A study in depth of f0(1370) 67

Fig. 14. Fit to Cern–Munich moments
withM = 0

Fig. 15. Fit to Cern–Munich moments
withM = 1

η = 1.0−0.5ρ4π(s) , (28)

tan δ =
12.9ρ2π
11.9+ s/m2π

(a+ bq2+ cq4+fq6) , (29)

where q is pion momentum in the ππ rest frame, and
a=−0.0444, b=−0.12508, c=−0.00561, d= 0.00014, all
in units of pion masses.
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The I = 2 D-wave has been studied carefully by
Pelaez [41]. His formula for the phase shift δ is used. The
elasticity η is set to 1 up to 1.05GeV, and thereafter taken
from the work of Wu et al. [40] as

η = 1−0.2(1.0−1.052/s)3 . (30)

The effect of this amplitude is very small in the present
analysis.

4.2 Comments on fitted resonances

The ππ S-wave plays an important role in fitting moments
with L = 0, 1, 2 and 3. The value of Γ2π for f0(1500) is
well determined and significantly larger than has been gen-
erally assumed. Values of Γ2π are collected into Table 5.
Values of χ2 are renormalised downwards by a factor 3.13
in order to allow for the high χ2 of the fit. The value of
Γ2π for f0(1790) is not well determined because of over-
lap with the broad f0(2020). Argand diagrams are shown
in Fig. 16.
Without f0(1370), a different type of solution can be

obtained, but without the extra loop of Fig. 16 between
1.15 and 1.25GeV. If the mass and width of f0(1500) are
fitted freely, the χ2 without f0(1370) is worse by 26. How-
ever, the width of f0(1500) goes up considerably, obviously

Fig. 16. Argand diagrams for
ππ partial waves in elastic scat-
tering

Table 5. Parameters of fitted resonances;
column 3 shows the (renormalised) change
in χ2 when the resonance is removed from
the fit to Cern–Munich data

State Γ2π (MeV) ∆χ2

f4(2040) 16±7 5.3
ρ3(1990) 36±8 12.4
ρ3(1690) 44±3 497
f2(1565) 46±14 33
f0(1500) 61±5 149

because it is simulating missing f0(1370); also the mass
goes down. If both mass and width of f0(1500) are held
fixed, χ2 is worse by 45 than with f0(1370) included.
Either or both of ρ(1450) and ρ(1700) are required to

reproduce L= 1 moments, but are poorly separated. One
can remove either with a change in χ2 < 10. The mass and
width of ρ(1450) are taken from Babar data [42], where
a conspicuous a1(1260)π signal is observed. The ρ(1900)
is fixed in width to the value 145MeV, the mean of the
two sets of Babar data [43]. It gives a significant improve-
ment, but is not well separated from ρ(2000). It may well
be a radial excitation of ρ(1450), but could also be a cusp
effect due to the opening of the p̄p threshold. A fit using
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the narrowwidth of Frabetti et al. [44] is somewhat poorer.
This raises the possibility of a resonance which has been
attracted to the p̄p threshold; Frabetti et al may be sensi-
tive to the threshold effect, while Babar data may be more
sensitive to the resonance.
Spin 2 states contribute strongly to moments with L=

2 to 5. The f2(1565) is definitely required but cannot be
parametrised accurately because of missing information
on Γ4π.
The ρ3(1690) makes a strong contribution to moments

with L= 5 and 6. Its optimum mass is 1709±6MeV. Re-
ducing it to the PDG average of 1688.7±2.1 does not af-
fect the fit to L= 6 moments significantly, but does make
the fit to L= 5 moments worse by 20 in χ2. The value of
Γ2π/Γtot is 0.224±0.032, in close agreement with the PDG
value.
The fits shown in Figs. 14 and 15 include mixing be-

tween σ, f0(1370) and f0(1500). Figure 17 shows the fit to
Y 0, Y 2, and Y 4 with the mixing removed. Without this
mixing, the fit to Y 2 is not satisfactory, because interfer-
ences between f2(1270) and f0(1370) are not accurately
fitted. Extra phase variations from the mixing play an im-
portant role. Such mixing is to be expected for strongly
overlapping resonances.

Fig. 17. The fit to Cern–Munich moments without mixing be-
tween σ, f0(1370) and f0(1500)

Fig. 18. The fit to the ππ mass projection of BES II data for
J/Ψ → ωπ+π−

Table 6. Parameters fitted
to the σ amplitude in units
of GeV

Parameter Value

M 0.900
b0 3.728
b1 0.092
A 2.882
g4 0.012

Figure 18 shows the fit to the ππ mass projection
of BES data for J/Ψ → ωπ+π−, normalised to 1 at
the highest data point. The σ pole is at 470± 30−
i(260± 30)MeV. These values have changed little from
the work of [32]. Parameters fitted to the σ amplitude
are shown in Table 6 in units of GeV. A parametrisation
of m(s) in the vicinity of the σ pole is shown above in
Table 3.

5 Fits to p̄p→ ηηπ0 data

The ηπ and ηη mass projections are shown in Fig. 19
for data in liquid hydrogen and gas. In (b) and (d)
there are obvious peaks due to a0(980). In (a) and (c)
there is a strong peak due to f0(1500) and a lower peak
which is naturally attributed to f0(1370); it canno t
be due to f2(1270), whose coupling to ηη is much too
weak.
The ingredients in the fit are a0(980) and a2(1320), σ,

f0(1370), f0(1500), f2(1270) and f2(1525). The f2(1270)→
ηη contributes very little intensity, because of its small
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Fig. 19.Mass projections from data on p̄p→
ηηπ0 at rest in liquid hydrogen and gas;
points show data and the histogram shows
the fit

branching ratio, but it is desirable to include it in order
to accomodate possible interference effects. This is done,
fixing the branching ratios between ηηπ0 and 3π0 data
according to the PDG value for BR[f2(1270)→ ηη]/
BR[f2(1270)→ ππ].
An earlier Crystal Barrel paper [16] has noted that

there is evidence for f2(1525)→ ηη. However, its branch-
ing ratio is sufficiently low that it would not be seen in
3π0 data. This result is confirmed here, and the f2(1525)
makes a large improvement to fitting ηηπ data,∆χ2 = 344
summed over data in liquid and gas.
Additional fits have been made including the exotic

π1(1400) in the πη P -wave; however, it makes no sig-
nificant contribution. The a0(1450) is above the available
mass range in ηπ, but its low mass tail could contribute
and this has been tried. However, the fits are no better
than can be obtained by including form factors into the
high mass tail of a0(980) in ηπ andKK channels. Inciden-
tally, the decay channel a0(980)→ η′π is included, assum-
ing that the ratio g2[a0(980)→ η′π]/g2[a0(980)→ ηπ] =
(0.6/0.8)2, as predicted by the pseudoscalar mixing angle.
This does improve the fit significantly, but needs further
study for p̄p→ ηπ0π0, where the a0(980) signal is more
distinct.
The Argand diagram fitted to the ηη S-wave is shown

in Fig. 20. There is a distinct cusp between f0(1370) and
f0(1500). Masses and widths fitted to both resonances are
entirely consistent with 3π0 data.
Without f0(1370) in the fit, the σ amplitude makes

some contribution to replacing it. However, χ2 is worse
by 317 for liquid data, i.e. > 17 standard deviations, and
68 for data in gas, > 8 standard deviations. The signifi-
cance level in liquid is high and confirms that the peak
at ∼ 1300MeV in ηη cannot be fitted adequately with
the σ contribution alone. This result by itself is sufficient
to show the existence of f0(1370), but the determination
of its mass and width are much poorer than from 3π0

data.
The fit determines the branching ratio of σ→ ηη com-

pared with σ→ π0π0. There is, however, a substantial
error which arises from interferences between the three

Fig. 20. The Argand diagram for the ηη S-wave in ηηπ0 data
in liquid; masses are shown in GeV

π0π0 contributions in 3π0 data. The σ contribution is the
largest one to 3π0 data, and is subject to some flexibil-
ity depending on the precise s-dependence of the ampli-
tude. There is a subtlety concerning the evaluation of the
branching ratio. In the 3π0 data, the integrated inten-
sity comes not only from the three individual ππ com-
binations 12, 23 and 13, but also from interferences be-
tween them. These interferences are quite large. What one
needs is the branching ratio of an isolated resonance with-
out these interferences. Putting this point in a different
way, the resonances have specific coupling constants g2

to each decay channel. One needs to derive these allow-
ing for the fact that the three combinations interfere in
the integrated intensity. This is done by evaluating in-
tensities with and without these interferences. The result
is

g2(ηη)

g2(ππ)
= 0.19±0.05 , (31)

in close agreement with the earlier determination of [22],
namely 0.20±0.05.
Branching ratios for f0(1500) and f0(1370) to ηη com-

pared with ππ are subject to the same large uncertainty
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arising from the range of possible fits of σ to 3π0 data. Re-
sults are

Γ [f0(1500)→ ηη)/Γ (f0(1500)→ ππ] = 0.135±0.04 ,

(32)

Γ [f0(1370)→ ηη)/Γ (f0(1370)→ ππ] = 0.19±0.07 .
(33)

Fig. 21. Fit to BES II data on J/Ψ → φπ+π−. (a) Dalitz plot from data; (b) fitted Dalitz plot; (c) ππ mass projection and fit
(upper histogram); experimental background is shown by the lower histogram; (d) fit to the φπ+ mass projection with the same
format as (c); (e) the coherent sum of 0+ contributions (full histogram); the lower histogram shows the σ component; (f) the
contribution from f2(1270)

6 Refitting data on J/Ψ → φπ+π�

These data provided earlier evidence for f0(1370) [21].
They are refitted here using for σ, f0(1370) and f0(1500)
the formulae of Sect. 2 and the parameters determined
here. The fit to φππ data is displayed in Fig. 21, retain-
ing the layout of the BES publication for comparison.
Data on φKK are refitted simultaneously, but changes are
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Fig. 22. (a) Fit to φππ
data without f0(1370);
(b) the fit with a very broad
0+ signal at 1650 MeV in-
terfering destructively with
f0(1500)

barely visible on figures and will therefore not be shown
here.
Technical details are as follows. It is important to con-

strain the branching ratios of f2(1270) and f0(1500) be-
tween KK and ππ within one standard deviation of PDG
averages, so as to stabilise the fit to φKK data. The new σ
parametrisation replaces the previous one, but has almost
no effect: a 0.7 standard deviation change in log likelihood;
there are much larger changes from reparametrisation of
f0(1500) and f0(1500). The σ→KK contribution is very
small and has little effect on the fit.
A reminder is necessary concerning the φππ data. The

BES analysis located a peak in φπ at 1500MeV, arising
from the triangle graph due to J/Ψ →K+K−π+π−, fol-
lowed by rescattering KK → φ. This was eliminated by
a kinematic cut, creating the dips in the φπ mass spectrum
of Fig. 21d at 1.5 and 2.8 GeV.
There is a peak at 1350MeV in the ππ mass projection

(c) attributed to interference between f2(1270), f0(1370)
and f0(1500). The new fit is shown by the upper histogram;
the lower one shows experimental background. The fit is
marginally poorer than that of the BES publication, which
had the freedom to optimise the mass of f0(1370) to 1350±
50MeV and the width to 265±40MeV. It resulted in an
f0(1370) contribution larger than f0(1500), though both
were needed. Their roles are now reversed, with a 4.6% in-
tensity contribution to φπ+π− from f0(1370) and a 6.1%
contribution from f0(1500). On Fig. 21e, the full histogram
shows the coherent sum of JP = 0+ contributions and
the lower dashed histogram the σ contribution. Figure 21f
shows the f2(1270) contribution. It is cleanly separated
from 0+ by angular distributions for production and decay
of resonances.
Figure 22a shows the fit without f0(1370). The narrow

f0(1500) is unable to compensate via interferences with σ,
f2(1270) and f0(980) and the resulting fit is visibly poor.
The fit is worse than Fig. 21 by 34.8 in log likelihood, i.e.

> 8 standard deviations. This is sufficient to confirm the
presence of f0(1370), but not enough to influence its fitted
mass and width.
There is evidence that the f0(1370) is resonant. If its

phase variation is artificially suppressed, leaving the line-
shape unchanged (even though the resulting amplitude is
non-analytic, therefore illogical), the fit is worse by 12.4 in
log likelihood, ∼ 5 standard deviations.
It has been suggested that the f0(1790) in BES data

might be eliminated by fitting a broad JP = 0+ ππ sig-
nal with which f0(1500) interferes destructively, producing
an interference minimum at ∼ 1600MeV. This suggestion
was based on the possibility that the high mass tail of the
σ might contribute strongly. That now appears illogical,
since the σ amplitude falls rapidly with increasing s and is
already small at 1 GeV.
The suggestion has been tested by fitting with a broad

component with a width 1000MeV and an optimised mass
of 1650MeV. Figure 22b shows the poor fit. It is of course
possible to tune the width of this broad component to
a lower value and produce a reasonable fit. However, it
makes little sense to invent a new broad component when
there is independent evidence for f0(1790) with consistent
parameters in J/Ψ → γ(4π) data from both Mark III [45]
and BES I [46]. Data on J/Ψ → γωφ [47] exhibit a strik-
ing 0+ peak at 1812MeV, which is consistent within errors
with the upper side of f0(1790); the ωφ threshold is at
1801MeV.

7 Other data

Let us recall that the first evidence for f0(1370) came
from data at the Argonne and BNL laboratories on ππ→
KK in the 1970 era. There is a distinct dip between the
1300MeV peak and the narrow f0(980). Figure 10a of [22]
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shows that without f0(1370) this dip cannot be fitted: the
f0(980) is too narrow and interferences with the broad σ
and f0(1500) fail to fit the data. Though these data alone
at not sufficient proof of the existence of f0(1370), they
are entirely consistent with parameters fitted here. The fit
made in [22] has been rerun using the new parametrisations
of the σ, f0(1370) and f0(1500) determined here. There
is no significant change to conclusions of [22]. The analy-
sis of Crystal Barrel data on KKπ channels by Anisovich
and Sarantsev [30] finds f0(1370) mass, width and coup-
ling constant in acceptable agreement with those reported
here.
Data of Barberis et al. [48] on central production of ππ

reveal quite different azimuthal distributions for f0(1370)
and f0(1500), suggesting that two separate resonances are
needed, whatever the nature of f0(1370).

8 The need for further analyses

Those who question the existence of f0(1370) should be
concerned also about the existence of a0(1450). Despite
its appearance in the summary table of the Particle Data
Book, it is subject to the same questions about dispersive
corrections as f0(1370). A fresh analysis is needed of data
on p̄p→ ηπ0π0, where it was discovered [49], including
m(s) into the parametrisation. It has also been observed
in p̄p at rest → ωρπ0 in the ωρ channel [50]. The thresh-
old for this final state will contribute strongly to m(s), as
may the possible decay channel a0(980)σ. A combined an-
alysis of data on ηηπ0 and ωρπ0 is in progress and will
be reported separately. If the a0(1450) survives, it is very
likely to be a qq̄ state, since none other is available for the
isospin 1 component of the nonet in this mass range. If so,
it is plausible that f0(1370) is likewise qq̄ (mixed with the
glueball).
Next, it is highly desirable to fit all existing data for the

JPC = 1−− sector including dispersive corrections. A start
has been made on this type of analysis by Weng et al. [51].
The greatest need is for data on ππ→ 4π. These are needed
to pin down details of the 4π final state with JPC = 0++,
1−− and 2++. Such data were presented in a preliminary
form by Ryabchikov at Hadron95, but have not been the
subject of a full publication yet. The analysis including
full dispersive effects is doubtless a major undertaking, but
even limited information about the 4π channel would be
very important.
Yet another example which may be affected strongly

by dispersive effects is the JPC = 1−+ sector. There is
substantial evidence for π1(1600) in decays to b1(1235)π,
η′π, f1(1285)π and ρπ. There is also evidence for struc-
ture in ηπ at ∼ 1400MeV. This is close to the sharp
thresholds for b1(1235)π and f1(1285)π. It is still an open
question whether there really is a resonant π1(1400), or
whether it can be fitted adequately as a threshold ef-
fect. It is also possible that there is a resonance asso-
ciated directly with these thresholds. What is needed
is an analysis including dispersive effects due to the
thresholds.

9 Concluding remarks

The f0(1370) is highly significant statistically in 5 sets of
data: p̄p→ 3π0 at rest in liquid hydrogen and gas, cor-
responding data for the ηηπ0 data channel, and J/Ψ →
φπ+π−. Overall, it is statistically more than a 52 standard
deviation effect. What is also important is that fitted pa-
rameters of f0(1370) agree remarkably closely between the
3π0 data in liquid and gas. There is weaker but consistent
evidence for f0(1370) in ππ→KK.
The data cannot be explained by the high mass tail of

the σ, because it is too broad. The requirement for a peak
in data with a full width of 207MeV requires an additional
narrower state, identified here with the f0(1370). No such
pole has appeared within the present parametrisation of
σ→ 4π.
Dispersive contributions due to the opening of the

4π channel have large effects, renormalising the Breit–
Wigner denominator. This severely limits the range of
Γ4π/Γ2π which can be successfully fitted to data. Despite
the strong effect of the 4π threshold, the resonance loop
on the Argand diagram is very close to a circle. This pro-
vides some justification for the common practice of fitting
a Breit–Wigner resonance of constant width: the resonance
behaves to first approximation like a simple pole. How-
ever, the phase is significantly affected once one reaches
a mass more than one half-width above resonance. A sim-
ple Breit–Wigner amplitude is adequate for finding reso-
nances; includingm(s) uncovers the dynamical effect of the
threshold.
There are presently no significant inconsistencies in pa-

rameters of f0(1370) between sets of data on ππ, KK and
ηη channels. Wide variations of mass and width appear
only in analyses of 4π data. However, those analyses do
not presently include σ→ 4π, which is found here to play
a large role. Unfortunately, these analyses need to be re-
peated including the σ contribution. Disagreements there-
fore exist only about schemes into which different authors
wish to fit the known states. Those schemes should not be
used as the basis for claiming that f0(1370) or any other
resonance does not exist.
Some authors, for example Maiani et al. [29], raise con-

cerns about mass differences between f0(1370), K0(1430)
and a0(1450). It now appears that f0(1370) is nearly de-
generate in mass with a1(1260), f1(1285) and f2(1270).
So it appears to pose no particular problem. It is likely
that the mass ofK0(1430) is influenced by its strong coup-
ling to Kη′, whose threshold opens at ∼ 1450MeV. It is
also known that a0(1450) appears only weakly in the ηπ
channel; it is likely that its mass is affected strongly by
coupling to ωρ and a0(1450)σ thresholds, just as the mass
of f2(1565) is close to the ωω threshold, and much lower
than the mass of a2(1700).
The present analysis of elastic data produces new quan-

titative estimates of Γ2π for f0(1500), f2(1565), ρ3(1690),
ρ3(1990) and f4(2040). Data on ππ → 4π would help
greatly in confirming the present analysis, and parametris-
ing more accurately 1−− states and f2(1565).
A final speculative remark emerges from the mixing

between σ, f0(1370) and f0(1500), which appears to be
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a necessity in fitting the elastic ππ data. This mixing sug-
gests a possible analogy with chemical binding. In the hy-
drogen molecule, two configurations of protons and elec-
trons mix. This is the familiar process of hybridisation.
The lowest eigenstate may be calculated using a varia-
tional principle. The suggestion made here is that con-
finement involves a hybridisation due to overlapping of
nearby resonant states. One linear combination of states
with favourable SU(3) configurationmoves down and other
combinations are pushed up in energy, in a way analo-
gous to formation of the covalent chemical bond. A simi-
lar variational principle is involved in the formation of
a superconductor.
The relevance of such an idea to the confinement pro-

cess itself is a matter of conjecture without calculations to
support it. The idea is that there is feedback between the
formation of resonances and a dynamic confinement, i.e.
condensation. Such a mechanism would explain naturally
why most of the huge number of possible molecular states
are not observed: most of them are driven upwards and be-
come a continuum.

Acknowledgements. It is a pleasure to thank Dr. Andrei Sarant-

sev for providing the Crystal Barrel data used here and for
discussions about meson resonances in general over a period of
many years. I am also grateful to Profs. V. Anisovich, G. Rupp
and E. van Beveren for similar discussions. I wish to thank

Prof. E. Klempt for providing Fig. 2 of unbinned Crystal Barrel
data.

References

1. C.J. Morningstar, M.J. Peardon, Phys. Rev. D 69, 034509
(1999)

2. E. Klempt, hep-ph/0404270
3. E. Klempt, A. Zaitsev, Glueballs, hybrids, multiquarks,
submitted to Phys. Rep. (2007)

4. W. Ochs, AIP Conf. Proc. 619, 167 (2002)
5. W. Ochs, QCD06, Montpellier, France, July 3–7 (2006)
6. D. Cohen et al., Phys. Lett. D 22, 2595 (1980)
7. A.J. Pawlicki et al., Phys. Rev. D 15, 3196 (1977)
8. A. Etkin et al., Phys. Rev. D 25, 1786 (1982)
9. C. Amsler et al., Phys. Lett. B 291, 347 (1992)
10. M. Gaspero, Nucl. Phys. A 562, 407 (1993)

11. A. Adamo et al., Nucl. Phys. A 558, 13c (1993)
12. C. Amsler et al., Phys. Lett. B 322, 431 (1994)
13. V.V. Anisovich et al., Phys. Lett. B 323, 233 (1994)
14. V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, B.S. Zou,
Phys. Rev. D 50, 1972 (1994)

15. D.V. Bugg, V.V. Anisovich, A.V. Sarantsev, B.S. Zou,
Phys. Rev. D 50, 4412 (1994)

16. C. Amsler et al., Phys. Lett. B 355, 425 (1995)
17. A. Abele et al., Nucl. Phys. A 609, 562 (1996)
18. D.V. Bugg, A.V. Sarantsev, B.S. Zou, Nucl. Phys. B 471,
59 (1996)

19. B.D. Hyams et al., Nucl. Phys. B 64, 134 (1973)
20. Particle Data Group, J. Phys. G 33, 1 (2006)
21. M. Ablikim et al., Phys. Lett. B 607, 243 (2005)
22. D.V. Bugg, Eur. Phys. J. C 47, 45 (2006)
23. A.V. Anisovich et al., Nucl. Phys. A 690, 567 (2001)

24. E.M. Aitala et al., Phys. Rev. Lett. 86, 770 (2001)
25. M. Ablikim et al., Phys. Lett. B 598, 149 (2004)
26. D.V. Bugg, Eur. Phys. J. C 37, 433 (2004)
27. N.A. Tornqvist, Phys. Rev. Lett. 49, 624 (1982)
28. N.A. Tornqvist, Z. Phys. C 68, 647 (1995)
29. L. Maiani et al., Eur. Phys. J. C 50, 609 (2007)
30. V.V. Anisovich, A.V. Sarantsev, Eur. Phys. J. A 16, 229
(2003) and further references given there

31. M. Ablikim et al., Phys. Lett. B 603, 138 (2004)
32. D.V. Bugg, J. Phys. G 34, 151 (2007)
33. A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Z. Phys.
A 359, 173 (1997)

34. C.A. Baker et al., Phys. Lett. B 467, 147 (1999)
35. G. Reifenrother, E. Klempt, Nucl. Phys. A 503, 886 (1989)
36. B. May et al., Phys. Lett. B 225, 450 (1989)
37. M. Ishida et al., Prog. Theor. Phys. 104, 203 (2000)
38. S. Pislak et al., Phys. Rev. D 67, 072004 (2003)
39. I. Caprini, I. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96,
032001 (2006)

40. F.Q. Wu et al., Nucl. Phys. A 735, 111 (2004)
41. J.R. Pelaez, hep-ph/0510215
42. B. Aubert et al., Phys. Rev. D 71, 052001 (2005)
43. B. Aubert et al., Phys. Rev. D 73, 052003 (2006)
44. P.L. Frabetti et al., Phys. Lett. B 578, 290 (2004)
45. D.V. Bugg et al., Phys. Lett. B 353, 378 (1995)
46. J.Z. Bai et al., Phys. Lett. B 472, 207 (1999)
47. M. Ablikim et al., Phys. Rev. Lett. 96, 162002 (2006)
48. D. Barberis et al., Phys. Lett. B 474, 423 (2000)
49. C. Amsler et al., Phys. Lett. B 333, 277 (1994)
50. C.A. Baker et al., Phys. Lett. B 563, 140 (2003)
51. Y. Weng et al., hep-ex/0512052



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


